Copyright ©2008-2020 SoftTeco
The Benefits of Healthcare Processes Automation

The Benefits of Healthcare Processes Automation

Automation in healthcare contributes to better customer care, optimizes administrative processes, and helps create accurate and insightful data sets.

Tech Review Series: .NET

Tech Review Series: .NET

Companies across the industries prefer to use .NET for enterprise applications due to the reliability of this framework and its rich functionality.

The Most Important Features For a Mobile Banking Application

The Most Important Features For a Mobile Banking Application

The best features for mobile banking are the ones that create an ultimate user experience, help easily navigate and use the app, and bring value to the users.

The Best Practices On How to Build a Data Warehouse

The Best Practices On How to Build a Data Warehouse

If you want to learn how to build a data warehouse that would accurately and securely store and manage your data, read our article on the best practices.

Tech Review Series: Java

Tech Review Series: Java

Java is one of the oldest and most used programming language in the world. Learn about its pros and cons and the most common use cases.

5 Ways How Enterprise Messaging Benefits Your Business

5 Ways How Enterprise Messaging Benefits Your Business

The use of enterprise messaging in business brings many tangible benefits and has a positive impact on the overall productivity and users satisfaction

5 Practices That Will Help You Develop Secure Software

5 Practices That Will Help You Develop Secure Software

In order to safeguard the application from external and internal threats, it is important to follow secure software development best practices.

SoftTeco is recognized as one of the Top Mobile App Development Companies by TopDevelopers

SoftTeco is recognized as one of the Top Mobile App Development Companies by TopDevelopers

SoftTeco has been listed among the top mobile app development companies of 2020 by the TopDevelopers organization.

Why Mentoring Advice in IT Is Important? Part 2.

Why Mentoring Advice in IT Is Important? Part 2.

Mentoring advice in IT is a highly valuable asset that helps junior specialists grow into knowledgeable and experienced professionals.

Why Mentoring Advice in IT Is Important? Part 1.

Why Mentoring Advice in IT Is Important? Part 1.

Mentoring advice in IT is a highly valuable asset that helps junior specialists grow into knowledgeable and experienced professionals.

Company news
AI for Credit Scoring: the Good, the Bad and the Ugly

AI for Credit Scoring: the Good, the Bad and the Ugly

Artificial Intelligence for Credit Scoring 

The financial industry is known to be quite a conservative one. Companies have been using traditional scoring methods for decades and remain quite hesitant about any innovations.

However, numbers state that it’s time for a change. Even the slightest mistake in the data can lead to huge consequences. In 2016, an Asia-Pacific bank lost $4 million - all due to some data-entry errors.

As well, traditional scoring limits the opportunity to apply for credit for a vast number of people, like people of color, young adults, etc. Such a biased approach towards credit scoring led to the FinTech companies developing innovative AI-powered solutions that are designed to minimize the scoring bias, lower the number of bad credits and increase the acceptance rate.

But, like any innovation, AI in credit scoring has both pros and cons. We will have a look at both and see how this technology slowly transforms the prudent industry of finances.

The good: benefits of using AI for credit scoring

As mentioned above, one of the biggest problems of traditional scoring methods is biased results.

There are certain standards that have always been defining trustworthy credit borrowers: gender, age, occupation, average income, etc. However, as credit companies continue seeing a high rate of bad loans, it becomes clear that this data is not enough. This is where AI steps in and offers a brand-new approach towards scoring.

Artificial Intelligence technology is capable of analyzing and processing massive data sets and identifying hidden and non-obvious patterns that may actually serve as a decisive factor upon granting a credit. Due to this capability, AI can use much more diverse data for the analysis. For example, AI-powered scoring tools can analyze one’s social media data to form a decision about granting credit.

Such an alternative approach towards lending empowers more people to actually receive credit and improve their credit record. At the same time, the increased accuracy of defining trustworthy borrowers will lower the risks for the credit companies and will let them make data-based and better decisions.

In addition, AI in credit scoring can help to identify the fraudulent behavior and thus, minimize the potential risks and save the company’s revenue.

The bad: the “black box” problem

While AI, indeed, can become a great aid for many financial companies, it also brings certain controversy in terms of data privacy and transparency.

Last year went under the GDPR sign. The EU General Data Protection Regulation states: “You have to explain how you process data in “a concise, transparent, intelligible and easily accessible form, using clear and plain language”.

In other words, every person has the right to demand an explanation of how personal data is collected and processes and the purposes for using it. But how does one explain the processes inside an ML model?

The “black box” problem is the inability to explain how exactly the Machine Learning model determines the creditworthiness of a borrower and decides who is reliable enough. This brings an array of questions: should we make simpler ML models that can be easily explained but sacrifice results accuracy? Is it possible to design a model that would be 100% GDPR compliant?

While many ML models are yet to be optimized in order to become more transparent, there are already some practices that ML engineers should follow to make their products more GDPR-compliant:

1) Describe and document every process
2) Identify all the measures used for risk management
3) Assess all the possible risks (i.e. the right to privacy)

As well, all AI products related to data collection and processing should be made in collaboration with data protection experts to ensure product reliability from the very start.

The ugly: biased decisions

Another big problem of AI-powered solutions for credit scoring is biased results.

On one hand, this statement seems irrational. If Artificial Intelligence can make more accurate and precise decisions, it should mean that they eliminate bias, isn’t that right?

On the other hand, AI models make these decisions based on the data that is “fed” to them. And this data consists of decisions that were made by people - and, most of the time, these decisions were biased. In addition, people set certain definitions for the model - and these definitions for data assessment can be biased, too.

In order for the solution provider to design a non-biased AI model for credit scoring, the company needs to take into consideration all the ethical issues from the start and invest some time and effort into coming up with the right rules and definitions for the model. As well, the data scientists should carefully select the data for model training: if the historical data is biased, the results will be biased too, despite the pre-set definitions and rules.

Conclusion

Artificial Intelligence technology can bring many advantages to credit scoring in terms of accuracy, better assessment, and speed. However, an AI-powered solution also needs to be transparent and explainable in order to comply with the GDPR.

Thus, software development companies need to pay close attention to the quality of the data that they use to train the models and need to set precise and clear goals in order to set up the needed requirements for the model so that it delivers the expected results.

author_avatar

Irina Linnik

Irina is a professional copywriter with over 7 years of experience in this domain. She loves creating compelling and informative copy that provides readers with all the needed information. Irina is also a frequent contributor to different blogs and websites across different domains.

View all articles by this author.